最近中文字幕高清中文字幕无,亚洲欧美高清一区二区三区,一本色道无码道dvd在线观看 ,一个人看的www免费高清中文字幕

為了賬號安全,請及時綁定郵箱和手機立即綁定

tensorflow之tf.placeholder 與 tf.Variable區(qū)別對比

標簽:
機器學習

二者的主要区别在于

Variable:主要是用于训练变量之类的。比如我们经常使用的网络权重,偏置。
值得注意的是Variable在声明是必须赋予初始值。在训练过程中该值很可能会进行不断的加减操作变化。
名称的真实含义,在于变量,也即在真实训练时,其值是会改变的,自然事先需要指定初始值;  
placeholder:也是用于存储数据,但是主要用于feed_dict的配合,接收输入数据用于训练模型等。placeholder值在训练过程中会不断地被赋予新的值,用于批训练,基本上其值是不会轻易进行加减操作。

placeholder在命名时是不会需要赋予值得,其被赋予值得时间实在feed_dict时。其命名的原因所在,仅仅作为一种占位符;

tf.placeholder(dtype, shape=None, name=None)

此函数可以理解为形参,用于定义过程,在执行的时候再赋具体的值

参数:
   dtype:数据类型。常用的是tf.float32,tf.float64等数值类型
   shape:数据形状。默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定
   name:名称。
案例:

tf.Variable


weights = tf.Variable(
    tf.truncated_normal([IMAGE_PIXELS, hidden1_units],           stddev=1./math.sqrt(float(IMAGE_PIXELS)), name='weights'))
biases = tf.Variable(tf.zeros
([hidden1_units]), name='biases')


點擊查看更多內容
TA 點贊

若覺得本文不錯,就分享一下吧!

評論

作者其他優(yōu)質文章

正在加載中
  • 推薦
  • 評論
  • 收藏
  • 共同學習,寫下你的評論
感謝您的支持,我會繼續(xù)努力的~
掃碼打賞,你說多少就多少
贊賞金額會直接到老師賬戶
支付方式
打開微信掃一掃,即可進行掃碼打賞哦
今天注冊有機會得

100積分直接送

付費專欄免費學

大額優(yōu)惠券免費領

立即參與 放棄機會
微信客服

購課補貼
聯(lián)系客服咨詢優(yōu)惠詳情

幫助反饋 APP下載

慕課網APP
您的移動學習伙伴

公眾號

掃描二維碼
關注慕課網微信公眾號

舉報

0/150
提交
取消